MUSCULAR ENDURANCE AND STRENGTH

In addition to cardiorespiratory fitness, one needs a high level of muscular endurance and strength. In a single day one may carry injured companions, push stalled vehicles, or do many other strength-related tasks. Indeed, survival in the wilderness may, in large part, depend on the muscular endurance and strength of the individual.

MUSCULAR FITNESS

Muscular fitness has two components: muscular strength and muscular endurance.

Muscular strength is the greatest amount of force a muscle or muscle group can exert in a single effort.

Muscular endurance is the ability of a muscle or muscle group to do repeated contractions against a less-than-maximum resistance for a given time.

Although muscular endurance and strength are separate fitness components, they are closely related. Progressively working against resistance will produce gains in both of these components.

MUSCULAR CONTRACTIONS

Isometric, isotonic, and isokinetic muscular endurance and strength are best produced by regularly doing each specific kind of contraction. They are described here.

Isometric contraction produces contraction but no movement, as when pushing against a wall. Force is produced with no change in the angle of the joint.

Isotonic contraction causes a joint to move through a range of motion against a constant resistance. Common examples are push-ups, sit-ups, and the lifting of weights.

Isokinetic contraction causes the angle at the joint to change at a constant rate, for example, at 180 degrees per second. To achieve a constant speed of movement, the load or resistance must change at different joint angles to counter the varying
forces produced by the muscle(s) at different angles. This requires the use of isokinetic machines. There are other resistance-training machines which, while not precisely controlling the speed of movement, affect it by varying the resistance throughout the range of motion. Some of these devices are classified as pseudo-isokinetic and some as variable-resistance machines.

Isotonic and isokinetic contractions have two specific phases - the concentric or "positive" phase and the eccentric or "negative" phase. In the concentric phase (shortening) the muscle contracts, while in the eccentric phase (elongation) the muscle returns to its normal length. For example, on the upward phase of the biceps curl, the biceps are shortening. This is a concentric (positive) contraction. During the lowering phase of the curl the biceps are lengthening. This is an eccentric (negative) contraction.

A muscle can control more weight in the eccentric phase of contraction than it can lift concentrically. As a result, the muscle may be able to handle more of an overload eccentrically. This greater overload, in return, may produce greater strength gains. The nature of the eccentric contraction, however, makes the muscle and connective tissue more susceptible to damage, so there is more muscle soreness following eccentric work.

When a muscle is overloaded, whether by isometric, isotonic, or isokinetic contractions, it adapts by becoming stronger. Each type of contraction has advantages and disadvantages, and each will result in strength gains if done properly.

The above descriptions are more important to those who assess strength than to average people trying to develop strength and endurance. Actually, a properly designed weight training program with free weights or resistance machines will result in improvements in all three of these categories.

PRINCIPLES OF MUSCULAR TRAINING

To have a good exercise program, the seven principles of training must be applied to all muscular endurance and strength training. These principles are overload, progression, specificity, regularity, recovery, balance, and variety.
OVERLOAD

The overload principle is the basis for all exercise training programs. For a muscle to increase in strength, the workload to which it is subjected during exercise must be increased beyond what it normally experiences. In other words, the muscle must be overloaded. Muscles adapt to increased workloads by becoming larger and stronger and by developing greater endurance.

To understand the principle of overload, it is important to know the following strength-training terms:

- **Full range of motion.** To obtain optimal gains, the overload must be applied throughout the full range of motion. Exercise a joint and its associated muscles through its complete range starting from the pre-stretched position (stretched past the relaxed position) and ending in a fully contracted position. This is crucial to strength development.

- **Repetition.** When an exercise has progressed through one complete range of motion and back to the beginning, one repetition has been completed.

- **One-repetition maximum (1-RM).** This is a repetition performed against the greatest possible resistance (the maximum weight a person can lift one time). A 10-RM is the maximum weight one can lift correctly 10 times. Similarly, an 8-12 RM is that weight which allows a person to do from 8 to 12 correct repetitions. The intensity for muscular endurance and strength training is often expressed as a percentage of the 1-RM.

- **Set.** This is a series of repetitions done without rest.

- **Muscle Failure.** This is the inability of a person to do another correct repetition in a set.

> When a muscle is overloaded by isometric, isotonic, or isokinetic contractions, it adapts by becoming stronger.

The minimum resistance needed to obtain strength gains is 50 percent of the 1-RM. However, to achieve enough overload, programs are designed to require sets with 70 to 80 percent of one's 1-RM. (For example, if a person's 1-RM is 200 pounds,
multiply 200 pounds by 70 percent \[200 \times 0.70 = 140 \text{ pounds}\] to get 70 percent of the 1-RM.)

A better and easier method is the repetition maximum (RM) method. The exerciser finds and uses that weight which lets him do the correct number of repetitions. For example, to develop both muscle endurance and strength, a soldier should choose a weight for each exercise which lets him do 8 to 12 repetitions to muscle failure. The weight should be heavy enough so that, after doing from 8 to 12 repetitions, he momentarily cannot correctly do another repetition. This weight is the 8-12 RM for that exercise.

MUSCULAR ENDURANCE/STRENGTH DEVELOPMENT

To develop muscle strength, the weight selected should be heavier and the RM will also be different. For example, the exerciser should find that weight for each exercise which lets him do 3 to 7 repetitions correctly. This weight is the 3-7 RM for that exercise. Although the greatest improvements seem to come from resistances of about 6-RM, an effective range is a 3-7 RM. The weight should be heavy enough so that an eighth repetition would be impossible because of muscle fatigue.

The weight should also not be too heavy. If one cannot do at least three repetitions of an exercise, the resistance is too great and should be reduced. Trainers who are just beginning a resistance-training program should not start with heavy weights. They should first build an adequate foundation by training with an 8-12 RM or a 12+ RM.

To develop muscular endurance, the trainer should choose a resistance that lets him do more than 12 repetitions of a given exercise. This is his 12+ repetition maximum (12+ RM). With continued training, the greater the number of repetitions per set, the greater will be the improvement in muscle endurance and the smaller the gains in strength. For example, when a lifter trains with a 25-RM weight, gains in muscular endurance will be greater than when using a 15-RM weight, but the gain in strength will not be as great.

Whichever RM range is selected, the trainer must always strive to over-load his muscles. The key to overloading a muscle is to make that muscle exercise harder than it normally does.
An overload may be achieved by any of the following methods:

- Increasing the resistance.
- Increasing the number of repetitions per set.
- Increasing the number of sets.
- Reducing the rest time between sets.
- Increasing the speed of movement in the concentric phase. (Good form is more important than the speed of movement.)
- Using any combination of the above.

PROGRESSION

When an overload is applied to a muscle, it adapts by becoming stronger and/or by improving its endurance. Usually significant increases in strength can be made in three to four weeks of proper training depending on the individual. If the workload is not progressively increased to keep pace with newly won strength, there will be no further gains. When a lifter can correctly do the upper limit of repetitions for the set without reaching muscle failure, it is usually time to increase the resistance. For most people, this upper limit should be 12 repetitions.

For example, if his plan is to do 12 repetitions in the bench press, the exerciser starts with a weight that causes muscle failure at between 8 and 12 repetitions (8-12 RM). He should continue with that weight until he can do 12 repetitions correctly. He then should increase the weight by about 5 percent but no more than 10 percent. In a multi-set routine, if his goal is to do three sets of eight repetitions of an exercise, he starts with a weight that causes muscle failure before he completes the eighth repetition in one or more of the sets. He continues to work with that weight until he can complete all eight repetitions in each set, then increases the resistance by no more than 10 percent.

SPECIFICITY

A resistance-training program should provide resistance to the specific muscle groups that need to be strengthened. These groups can be identified by doing a simple assessment. The exerciser slowly does work-related movements he wants to improve and, at the same time, he feels the muscles on each side of the joints where motion occurs. Those muscles that are contracting or becoming tense during the movement are the muscle groups involved. If the person’s performance of a task is not adequate or if he wishes to improve, strength training for the identified muscle(s) will be beneficial. To improve his muscular endurance and strength, in a
given task, the trainer must do resistance movements that are as similar as possible to those of doing the task.

REGULARITY

Exercise must be done regularly to produce a training effect. Sporadic exercise may do more harm than good. One can maintain a moderate level of strength by doing proper strength workouts only once a week, but three workouts per week are best for optimal gains. The principle of regularity also applies to the exercises for individual muscle groups. A person can work out three times a week, but when different muscle groups are exercised at each workout, the principle of regularity is violated and gains in strength are minimal.

RECOVERY

Consecutive days of hard resistance training for the same muscle group can be detrimental. The muscles must be allowed sufficient recovery time to adapt. Strength training can be done every day only if the exercised muscle groups are rotated, so that the same muscle or muscle group is not exercised on consecutive days. There should be at least a 48-hour recovery period between workouts for the same muscle groups. For example, the legs can be trained with weights on Monday, Wednesday, and Friday and the upper body muscles on Tuesday, Thursday, and Saturday.

There should be at least a 48-hour recovery period between workouts for the same muscle group.

Recovery is also important within a workout. The recovery time between different exercises and sets depends, in part, on the intensity of the workout. Normally, the recovery time between sets should be 30 to 180 seconds.

BALANCE

When developing a strength training program, it is important to include exercises that work all the major muscle groups in both the upper and lower body. One should not work just the upper body, thinking that running will strengthen the legs.

It is important to include exercises that work all the major muscle groups in both the upper and lower body.
Most muscles are organized into opposing pairs. Activating one muscle results in a pulling motion, while activating the opposing muscle results in the opposite, or pushing, movement. When planning a training session, it is best to follow a pushing exercise with a pulling exercise which results in movement at the same joint(s). For example, follow an overhead press with a lat pull-down exercise. This technique helps ensure good strength balance between opposing muscle groups which may, in turn, reduce the risk of injury. Sequence the program to exercise the larger muscle groups first, then the smaller muscles. For example, the lat pull-down stresses both the larger latissimus dorsi muscle of the back and the smaller biceps muscles of the arm. If curls are done first, the smaller muscle group will be exhausted and too weak to handle the resistance needed for the lat pull-down. As a result, the trainer cannot do as many repetitions with as much weight as he normally could in the lat pull-down. The latissimus dorsi muscles will not be overloaded and, as a result, they may not benefit very much from the workout.

The best sequence to follow for a total-body strength workout is to first exercise the muscles of the hips and legs, followed by the muscles of the upper back and chest, then the arms, abdominal, low back, and neck. As long as all muscle groups are exercised at the proper intensity, improvement will occur.

VARIETY

A major challenge for all fitness training programs is maintaining enthusiasm and interest. A poorly designed strength-training program can be very boring. Using different equipment, changing the exercises, and altering the volume and intensity are good ways to add variety, and they may also produce better results. The trainer should periodically substitute different exercises for a given muscle group(s). For example, he can do squats with a barbell instead of leg presses on a weight machine.