10.2 Simplifying Radicals

Objectives: Be able to simplify radicals involving products and quotients.

Radical Expression: an expression that contains a radical (aka Square root)

You can simplify a radical expression if:

1. The **radicand** has no **perfect square factors** other than 1.

 | 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144,... |
 | number under the √ |
Perfect Squares:

<table>
<thead>
<tr>
<th>2^2</th>
<th>4</th>
<th>7^2</th>
<th>49</th>
<th>12^2</th>
<th>144</th>
</tr>
</thead>
<tbody>
<tr>
<td>3^2</td>
<td>9</td>
<td>8^2</td>
<td>64</td>
<td>13^2</td>
<td>169</td>
</tr>
<tr>
<td>4^2</td>
<td>16</td>
<td>9^2</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5^2</td>
<td>25</td>
<td>10^2</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6^2</td>
<td>36</td>
<td>11^2</td>
<td>121</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are the factors you are looking for.
Simplify:

\[\sqrt{196} \quad 14 \]

\[\sqrt{160} \quad \frac{\sqrt{16 \cdot 10}}{\sqrt{16} \cdot \sqrt{10}} \]

\[4 \sqrt{10} \]
Simplify:

\[\sqrt{72}\]
\[= \frac{\sqrt{36 \cdot 2}}{\sqrt{36 \cdot \sqrt{2}}}\]
\[= \frac{6\sqrt{2}}{\sqrt{2}}\]

\[\sqrt{125}\]
\[= \frac{\sqrt{25 \cdot 5}}{\sqrt{25 \cdot \sqrt{5}}}\]
\[= \frac{5\sqrt{5}}{5\sqrt{5}}\]
Simplify:

\[\sqrt{112} \]

\[\frac{\sqrt{16} \cdot 7}{\sqrt{16} \cdot \sqrt{7}} \]

\[\frac{4 \sqrt{7}}{} \]

\[\sqrt{98} \]

\[\frac{\sqrt{49} \cdot 2}{\sqrt{49} \cdot \sqrt{2}} \]

\[\frac{7 \sqrt{2}}{} \]
Simplifying Square Roots

Concept: Simplifying square roots

Remember: A simplified square root radical contains no square factors other than 1.

Example: Simplify: \(\sqrt{125x^4} \)

Look for square factors.

\[
\sqrt{125x^4} = \sqrt{25x^4 \cdot 5}
\]

\[
= \sqrt{25x^4} \cdot \sqrt{5}
\]

Product property of square roots.

\[
= 5|x^2|\sqrt{5}
\]

25 = 5 and \(x^4 = (x^2)^2 \).

Write the greatest square factor of the radicand. Then simplify. Use a calculator to check when possible.

1. \(\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2} \)

2. \(\sqrt{300} = \sqrt{100 \cdot 3} = 10\sqrt{3} \)

3. \(\sqrt{75} = \sqrt{25 \cdot 3} = 5\sqrt{3} \)

4. \(\sqrt{32} = \sqrt{16 \cdot 2} = 4\sqrt{2} \)

Simplify. Use a calculator to check when possible.

5. \(\sqrt{80} \approx 8.94 \)

6. \(\sqrt{60} \approx 7.75 \)

7. \(\sqrt{72} \approx 8.49 \)

8. \(\sqrt{500} \approx 22.36 \)

9. \(\sqrt{600} \approx 24.49 \)

10. \(\sqrt{120} \approx 10.95 \)

Concept: Simplifying square roots containing variable expressions

Remember: The radicand of a square radical must be equal to or greater than 0.

Example: For what value of \(x \) will \(\sqrt{-3x + 15} \) be a real number?

\(-3x + 15 \geq 0 \)

The radicand must be nonnegative.

\(-3x \geq -15 \)

Solve the inequality.

\(x \leq 5 \)

Reverse the direction of the inequality.

For all \(x \leq 5 \), \(\sqrt{-3x + 15} \) is a real number.

Find the values of \(x \) that make each radical expression a real number.

11. \(\sqrt{x - 8} \)

12. \(\sqrt{-2x - 10} \)

13. \(\sqrt{-3x + 1} \)

14. \(\sqrt{x + 12} \)

15. \(\sqrt{2x - 1} \)

16. \(\sqrt{3x + 2} \)

Evaluate for the given value of the variable. Then simplify, if possible.

17. \(\sqrt{4y + 1}, y = 2 \) \(\sqrt{9} = 3 \)

18. \(\sqrt{3x - 1}, x = 7 \)

19. \(\sqrt{-4b + 7}, b = -2 \)

20. \(\sqrt{-2n + 16}, n = 6 \)

10 Chapter 12